New insights on the hydrological cycle of Earth: Early results from Cloudsat

Graeme Stephens

- •CloudSat successfully launched April 28, 2006
- •Operationally collected data since June, 2 (>98% all data since has been processed)
- Products released at end of January
- 2year funded mission, seeking an extension for further 3 years

CloudSat Mission science goals

•Measure vertical structure of clouds, quantify their ice and water contents as a step toward improved weather prediction and understanding of clim •Products

What are the fu • various cloud properties - profiles, cloud How do structure & physics, etc T,q analysis

What is the i Precipitation incidence

•Quantify the relations •Quantitative precipitation heating by clouds

Do clouds heat or cool the atmosphere (relative to clear skies)?

Do the radiative properties of precipitation and non-precipitating clouds differ?

- •Evaluate cloud information derived from other research and operational satellites
- Improve our understanding of aerosol indirect effect on clouds and precipitation

To what extent are the properties above (water, ice, precipitation, vertical structure) influenced by aerosol?

CloudSat Data Processing Center (DPC)

http://www.cloudsat.cira.colostate.edu

also Stephens et al, 2002; BAMS

CloudSat - Quicklook Image - Geo and MODIS imagery

Day 185 July 4 20,130

Through the Eye of Typhoon Ewiniar

Example of cloud structure statistics (JJA)

- 2B geoprof Cloud base differences from other satellite products

Cloud 'Impact' on Radiative heating of atmosphere 2b-fluxhr product

Preliminary, one month of data

Clouds over global land areas radiatively cool Clouds over global oceans radiatively heat ?????

Cloudsat, ECMWF and GOES5

Fractional Accumulation JJA 60S-60N

Preliminary

1. Studying the process of precipitation formation

The idea - estimate the rate at which cloud water is converted to rain and examine factors that influence this conversion process

Fundamental to most of the critical cloud/precipitation related problems that confront us (indirect effects, low cloud life cycle, large-scale precipitation,)

Using matched A-Train observations

Stephens and Haynes, 2007

2. Ice content and the study of UT moisture

Cloud Ice water content (2B-CWC) - modelers last line of defense against measured TOA fluxes¹ 1 Tony DelGenio

Toward quantifying Precipitation from CloudSat

1. Comparison between CloudSat and TRMM

2. Comparison AMSR-E

3. Quantifying of snowfall

The Canadian C3VP experiment CloudSat cloud and cloud precipitation validation

Example
Cloudsat-like
retrieval of snow

Summary

We are gathering new important insights (& understanding) on the global water cycle and the (atmospheric) moist processes that shape it - such as insights on

- global precipitation efficiency,
- cloud structures in relation to storm types and precipitation characteristics - we are finding substantially more light rain from shallow clouds than is observed with other sensors or modeled
- we are gaining insights on the warm-rain production
- •influence of clouds on atmospheric and surface energetics and its connection to the water cycle

The knowledge being gathered offers a means for testing prediction models at much deeper levels than has been possible in the past. These results are already impacting moist physics formulations in global models.

Composite vertical profile for west pac, JJA

Minimum cloud top heights distributions

Of note:

- Trimodality (quadra-modal) heights
- precipitating clouds are deeper than non precipitating clouds

Revealing the bimodality of tropical precipitation

July

December

Preliminary steps toward the CloudSat radar/lidar geoprof

Preliminary example for portion of an orbit

Courtesy Jay Mace

Pixel-Level Comparisons

Our research using ARM observations at one tropical site reveals that tropical convective precipitation falling from multiple layered clouds is frequent and significant (~40% of total) - CloudSat also suggests it is a ubiquitous feature of tropical precipitating systems

Fractional Accumulation

JJA 60S-60N

Cloud top comparisons - GOES IR

Good agreement over Thick clouds